
Similarity detection on LLM generated source code with

SCANOSS

PhD. Oscar Enrique Goñi

February 27, 2025

Abstract

This paper investigates source code similarity detection in Large Language Model (LLM) out-
puts using the SCANOSS platform. While recent research has identified concerns regarding LLMs
generating code that closely resembles their training data, the full extent of this similarity across
the broader open-source ecosystem remains unexplored. We extend previous research by eval-
uating generated code snippets against SCANOSS’s comprehensive open-source knowledge base,
which provides a more complete assessment of potential code similarity beyond the original training
datasets. We have used SCANOSS’s Winnowing-based scanning algorithm as starting point to an-
alyze the original metrics described in [XGHZ24a], and also defined a new metric to evaluate code
snippets at various similarity thresholds. Our findings reveal that approximately 30% of analyzed
code exhibits at least 10% similarity to existing open-source implementations, while 1% maintains
similarity even at a more stringent 30% threshold. These results indicate that code similarity in
LLM outputs may be more prevalent than previously indicated when evaluated against a broader
open-source codebase. Our study contributes to the ongoing discussion of LLM-generated code’s
originality and its implications for software licensing compliance, while validating the effectiveness
of lightweight similarity detection algorithms as preliminary indicators for more comprehensive
analysis

1 Introduction

In recent years, the relentless global interest in AI has led to the emergence of numerous Large Language
Models (LLMs). As a product of extensive human research, AI promises to be a transformative tool
that will complement future productive activities.

Software development stands as one of many fields already embracing this technology, particularly
in source code generation based on programmer intent (prompts). However, since AI models acquire
training through examples, the generated source code often exhibits significant similarity to, or exact
replication of, their training data. While this poses no inherent limitation when the original source code
carries permissive licensing, it can lead to serious legal implications when dealing with incompatible
licenses.

2 Background

In 2023, SCANOSS began receiving inquiries regarding their platform’s capability to detect LLM-
generated source code. This led to an initial experiment with the GPT model, where a prompt was
designed to implement a specific algorithm used in SCANOSS’s own platform.

The third-generation output produced an exact SCANOSS implementation containing:

• Identical comments

• Identical variable names

• Identical syntactic structure

• Minor variations in comment formatting (substitution of /* */ with //)

• Variations in method/function definition ordering

1

2.1 Related work

Research conducted in [XGHZ24a] addresses this challenge through an empirical study to identify
a reasonable standard of ”notable similarity” that excludes the possibility of independent creation,
indicating a copying relationship between LLM output and specific open-source code. Based on this
standard, the authors propose LICOEVAL [XGHZ24b], an evaluation benchmark for measuring LLMs’
license compliance capabilities. Their evaluation of 14 popular LLMs revealed that even top-performing
models produce a non-negligible proportion (0.88% to 2.01%) of code notably similar to existing
open-source implementations. Significantly, most LLMs fail to provide accurate license information,
particularly for code under copyleft licenses.

3 Hypothesis

While the analyzed work considers a substantial dataset (783GB of code across 86 languages, with
74,772,489 Python functions initially extracted and filtered to 2,628,395 based on specific criteria), the
results are analyzed on a subset of the universe of Open Source Code. This report aims to evaluate
the original study’s findings against a broader Open Source Code base.

4 Experimental setup

Although access to the original prompts and complete detailed results was limited, we obtained gen-
erated code samples from GitHub. We were able to collect 10,000 source code snippets generated by
the original work. This experiment uses the SCANOSS knowledge-base through the osskb.org service
provided by the Software Transparency Foundation[stf25] and running SCANOSS’s open-source
scanning tools [SCA25].

The scanning platform provides three types of results:

• No Match: No coincidences found.

• Snippet Match: Coincidences found in certain code portions

• File Match: Exact match found

Given that the analysis involves isolated functions rather than complete files, File Match results
are not expected.

As of this white-paper’s publication, the SCANOSS knowledge base encompasses 27 terabytes of
unique open-source software (OSS) code, sourced from more than 250 million URLs. With a monthly
growth rate of approximately 2%, this represents a search space approximately 35 times larger than
the original dataset.

4.1 Technical Overview: SCANOSS Snippet Matching Algorithm

SCANOSS platform implements a Winnowing mechanism to detect equivalent portions of the source
code [SCA20]. During scanning initiation, the CLI [sp20] converts each line of source code into sets of
fingerprints for searching and matching. This approach prevents users from sending actual source code
content and makes reconstruction virtually impossible. Additionally, the service is stateless, leaving
no trace of any queries. Using the fingerprint set, the scanning engine searches for matches within
the Knowledge Base, providing information about the origin of matching code and corresponding
line ranges. Although the algorithm effectively ignores minor formatting changes, it may not detect
matches where variables have been renamed or values replaced with constants. For cases demanding
precise line-by-line comparison, the SCANOSS engine implements High Precision Snippet Matching
(HPSM). This advanced feature necessitates the transmission of supplementary hashes that represent
the vertical encoding of the source code structure, enabling more granular matching capabilities.

2

Figure 1: Experiment setup

5 Methodolgy

The original research implements a comprehensive categorization system for source code snippets.
However, for the purposes of our investigation, we have concentrated solely on leveraging the data set
constructed in the original work, without modifying its classification structure.

1. Snippet creation: Our methodological approach begins with the disaggregation of dataset
snippets into discrete source code files. This preliminary decomposition is a prerequisite for
executing the initial scanning process against the OSSKB.org knowledge base.

2. Fingerprinting: Each file is subjected to a fingerprinting procedure and transmitted to the
OSSKB.org service. This implementation utilizes the scanoss-py tool with default parame-
ters. The tool performs two key functions: automatic fingerprint generation and submission for
comparative analysis.

3. Scanning: Once received by the service, the scanning engine executes a search algorithm to iden-
tify the minimum acceptable match threshold. Upon completion of the fingerprint comparison
process, the system returns comprehensive results to the client in JSON format, encompassing
detailed information about both the matched files and their associated components.

4. Filtering: The scan results are used as initial indicators to facilitate a comprehensive analysis of
the identified matching source code segments. This preliminary matching serves as a foundation
for a more detailed comparative examination. This work focuses only on the following data of
interest from the scanning results:

• File Hash: The MD5 of the OSS file that matches. This value will be used as a key to fetch
the OSS source code content.

• Match type: Snippet matching is expected where coincidences are found. A value equal to
none means that no coincidences were found.

• Match range: Scanned snippet and OSS lines that match. We anticipate identifying a
limited matching range that is proportional to and constrained by the total length of the
analyzed snippet.

The algorithm’s characteristics mentioned above do not present significant limitations for our
study. The detection of even small matching code portions provides sufficient starting points
for more detailed comparison. In this particular case, the HPSM feature is kept disabled during
scanning. Lets consider the following source code snippets

3

// Snippet A
for (int i =0; i <10; i++){

acum += i ∗10
}

// Snippet B
for (int i =0; i <10; i++)
{

acum += i ∗10
}

While Snippets A and B share identical semantics and generate identical fingerprints due to their
textual similarity, the variation in block opening style results in a different vertical fingerprint
pattern, causing the system to discard what would otherwise be a valid match. In the partic-
ular context of this investigation, the principal justification for disabling the feature lies in the
observation that strict exact matching might exclude potentially relevant matches, while more
flexible matching criteria can establish foundational points for a deeper analytical examination.

5. Evaluation: Upon identification of potential OSS matches, we initiate an in-depth analytical
process of the potentially corresponding code snippets. This analytical phase commences with
the retrieval of complete source content from each identified OSS file. Once in place, the following
metrics are evaluated using both OSS file and the generated snippet:

• Jaccard distance

• Shared shingles

• Bleu4

• Winnowing match ratio

For the purpose of conducting an equitable comparative analysis with the original investigation’s
results, we implement the same set of metrics and preserve the original matching code proportion.
This methodological consistency ensures the validity of our comparative analysis.

Furthermore, the analysis has been enhanced by incorporating a Winnowing Matching Rate
(WMR). This metric measures the proportion between the matching OSS code size and the
generated code size, providing insight into the relative scale of the identified matches. The
primary objective of this additional measurement is to assess the scanning engine’s performance
and response characteristics when processing these specific code snippet types.

WMR =
#MatchedOSSlines

#GeneratedSnippetLines

6 Results

Our experimental methodology employs a one-shot execution utilizing an automated script, following
the process detailed in 5. The experimental results, presented in 1, demonstrate the relationship
between varying similarity thresholds and match rates. Analysis of the data reveals two significant
findings: at the most permissive similarity threshold of 5%, approximately 30% of the analyzed source
code corresponds to OSS files. In contrast, when applying the most stringent similarity threshold of
30%, the match rate maintains a level exceeding 1%, indicating persistent code similarity even under
restrictive conditions.

Threshold Jaccard distance Shared Shringles Bleu4 Winnowing
10 543 528 2019 3515
15 272 257 1408 3275
20 152 137 1006 2873
25 78 78 652 2433
30 48 49 428 2068

Table 1: Similarity vs. number of source code snippets matching

The analysis encompasses the entire source code text, including both executable code and com-
ments. Given that comments within the code may have undergone translation or reformulation, it

4

is important to note that these modifications could have influenced the calculated similarity metrics.
This consideration warrants attention when interpreting the overall similarity assessments.

Figure 2: Evaluation of matching ranges for different metrics

Observation of the data indicates a consistent trend across all metrics, with both BLEU4 and Win-
nowing algorithms displaying notably more permissive characteristics in their similarity assessments
compared to other measures.

Threshold Jaccard distance Bleu4 Winnowing
10-30% 0.5-5.7% 4.28-20.1% 20.6-35.1%

Table 2: Evaluation of similarity of LLM generated code vs. OSS code for the proposed metrics

The Table 2 presents a consolidated analysis of similarity metrics evaluated across the complete
dataset consisting of 10,000 generated code snippets, providing quantitative measurements for each
applied comparison methodology.

7 Conclusions

This work describes an experiment designed to validate the findings of previous research concerning the
similarity between LLM-generated source code and the original source code used in training. While our
study did not focus on code generation itself, it utilizes a subset of code generated from the previous
investigation as a reference point.

We incorporated the metrics from the original study and supplemented them with SCANOSS’s
Winnowing algorithm metric (WMR). Our findings support the original research conclusions while
indicating a higher upper detection threshold. The original work reported matches ranging from 0.8%
to 2%, whereas our experiment yielded values between 0.5% and 5.3%. Although we considered a
smaller input set, our analysis encompassed a larger knowledge base, and we attribute the difference
between both studies to this expanded scope. Figure 3 depicts the visual comparison between both
works.

Notably, the behavior of the Winnowing metric reported by the SCANOSS search engine proves
particularly interesting. While the values produced by this metric alone would not definitively de-
termine whether code was LLM-generated, its trend aligned consistently with other more complex
metrics. This observation validates our hypothesis that Winnowing results can serve as an effective
starting point for more detailed analysis. The research demonstrates that expanding the reference
knowledge base reveals higher similarity rates than previously identified, while confirming the funda-
mental findings of the original study. Additionally, it validates the effectiveness of simpler matching
algorithms as preliminary indicators for more comprehensive analysis.

5

Figure 3: Results comparison setup

8 Discussion

Analysis of the similarity metrics reveals that both BLEU4 and Winnowing consistently report higher
similarity rates compared to Jaccard distance. This disparity can be attributed to their inherent
ability to capture structural and syntactic patterns in source code. While Jaccard distance operates
primarily on direct text comparison, BLEU4 and Winnowing employ more sophisticated mechanisms
that can detect functional similarities even when surface-level modifications, such as variable renaming
or formatting changes, are present. BLEU4’s n-gram based approach allows it to recognize repeated
code patterns and structural similarities while being less sensitive to localized changes. Similarly,
Winnowing’s fingerprinting mechanism is designed to identify core algorithmic patterns while being
resilient to common code modifications. These characteristics make both metrics particularly well-
suited for source code similarity analysis, as they better reflect the functional equivalence of code
segments rather than merely their textual similarity. The higher detection rates of these metrics
should not be interpreted as false positives, but rather as a more comprehensive capture of actual code
similarity. In the context of source code analysis, where functional equivalence is often more relevant
than exact textual matching, BLEU4 and Winnowing provide more meaningful similarity assessments
than traditional text-based metrics like Jaccard distance.

References

[SCA20] SCANOSS. Source code fingerprinting with winnowing. https://github.com/scanoss/
wfp, 2020. Accesed: 10-02-2024.

[SCA25] SCANOSS. Open source inventory engine built for modern devsecops. https://github.
com/scanoss, 2020-2025. Accesed: 10-02-2024.

[sp20] scanoss py. Scanoss scanning cli. https://github.com/scanoss/scanoss-py, 2020. Ac-
cesed: 10-02-2024.

[stf25] stf. Software transparency foundation. https://st.foundation, 2020-2025. Accesed:
10-02-2024.

[XGHZ24a] Weiwei Xu, Kai Gao, Hao He, and Minghui Zhou. A first look at license compliance
capability of llms in code generation, 08 2024.

[XGHZ24b] Weiwei Xu, Kai Gao, Hao He, and Minghui Zhou. Licoeval: Evaluating llms on license
compliance in code generation, 2024.

6

https://github.com/scanoss/wfp
https://github.com/scanoss/wfp
https://github.com/scanoss
https://github.com/scanoss
https://github.com/scanoss/scanoss-py
https://st.foundation

	Introduction
	Background
	Related work

	Hypothesis
	Experimental setup
	Technical Overview: SCANOSS Snippet Matching Algorithm

	Methodolgy
	Results
	Conclusions
	Discussion

